Implement XOR Problem using Multi-Layered Perceptron
XoR Problem:
Below is a clear, step-by-step implementation of the XOR
problem using a Multi-Layer Perceptron (MLP). I will first explain the theory,
then show the mathematical steps, and finally provide a simple implementation.
Step 1: Understand the XOR Problem
The XOR (Exclusive OR) function outputs:
|
x₁ |
x₂ |
XOR |
|
0 |
0 |
0 |
|
0 |
1 |
1 |
|
1 |
0 |
1 |
|
1 |
1 |
0 |
Step 2: Network Architecture
We choose a 2–2–1 MLP architecture:
- Input
layer: 2 neurons (x₁, x₂)
- Hidden
layer: 2 neurons
- Output
layer: 1 neuron
Activation function:
- Hidden
layer → Sigmoid
- Output layer → Sigmoid
Step 3: Initialize Parameters
Let:
- Weights
from input to hidden layer →
- Bias
for hidden layer →
- Weights
from hidden to output layer →
- Bias
for output layer →
Initialize weights and biases with small random values.
Step 4: Forward Propagation
4.1 Hidden Layer Computation
4.2 Output Layer Computation
Where sigmoid function is:
Step 5: Loss Function
Use Mean Squared Error (MSE):
Step 6: Backpropagation
6.1 Output Layer Error
6.2 Hidden Layer Error
Where:
Step 7: Update Weights and Biases
Using Gradient Descent:
Where is the learning rate.
Step 8: Algorithm (Step-by-Step)
- Initialize
weights and biases
- Perform
forward propagation
- Compute
loss
- Perform
backpropagation
- Update
weights and biases
- Repeat for multiple epochs
Comments