def candidate_elimination(attributes, target): """ Implements the Candidate-Elimination algorithm for concept learning. Parameters: - attributes: List of examples (list of lists). - target: List of target values (list of strings, e.g., 'Yes' or 'No'). Returns: - S: Most specific boundary. - G: Most general boundary. """ # Step 1: Initialize S (most specific) and G (most general) num_attributes = len(attributes[0]) S = ["Φ"] * num_attributes G = [["?"] * num_attributes] # Step 2: Process each training example for i, example in enumerate(attributes): if target[i] == "Yes": # Positive example # Remove inconsistent hypotheses from G G = [g for g in G if is_consis...
def find_s_algorithm(data, target): """ Implements the Find-S algorithm for concept learning. Parameters: - data: List of examples (list of lists). - target: List of target values (list of strings, e.g., 'Yes' or 'No'). Returns: - The most specific hypothesis. """ # Step 1: Initialize the most specific hypothesis hypothesis = ["Φ"] * len(data[0]) # Step 2: Iterate over the dataset for i, instance in enumerate(data): if target[i] == "Yes": # Process only positive examples for j in range(len(instance)): if hypothesis[j] == "Φ": # Initialize to the first positive example hypothesis[j] = instance[j] ...